Transcendence of special values of Goss L-functions attached to Drinfeld modules

Changningphaabi Namoijam, NTHU

2021 TMS Annual Meeting, January 17-18, 2022

(joint work with Oğuz Gezmiş)

Special values of Goss L-functions

Overview

2 Goss *L*-functions and results

イロト イポト イヨト イヨト

æ

Section 1

Classical case

C. Namoijam (NTHU)

Special values of Goss L-functions

January 18, 2022

э

• The Riemann zeta function $\zeta(\mathfrak{s})$ is given by

$$\zeta(\mathfrak{s}) = \sum_{n=1}^\infty \frac{1}{n^{\mathfrak{s}}}, \quad \text{where } \mathfrak{s} \in \mathbb{C} \text{ satisfying } \Re(\mathfrak{s}) > 1.$$

Special values of Goss L-functions

イロト イボト イヨト イヨト

æ

• The Riemann zeta function $\zeta(\mathfrak{s})$ is given by

$$\zeta(\mathfrak{s}) = \sum_{n=1}^\infty \frac{1}{n^{\mathfrak{s}}}, \quad \text{where } \mathfrak{s} \in \mathbb{C} \text{ satisfying } \Re(\mathfrak{s}) > 1.$$

• When s is a positive integer, $\zeta(2s)$ is transcendental over \mathbb{Q} .

(日)

3

• The Riemann zeta function $\zeta(\mathfrak{s})$ is given by

$$\zeta(\mathfrak{s}) = \sum_{n=1}^\infty \frac{1}{n^{\mathfrak{s}}}, \quad \text{where } \mathfrak{s} \in \mathbb{C} \text{ satisfying } \Re(\mathfrak{s}) > 1.$$

• When s is a positive integer, $\zeta(2s)$ is transcendental over $\mathbb Q.$

• When $s \in \mathbb{Z}_{\geq 2}$, it is expected that $\zeta(s)$ is transcendental over \mathbb{Q} .

3

Let E be an elliptic curve defined over \mathbb{Z} . For a prime $p \in \mathbb{Z}$, let E_p denote the reduction of E modulo p.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

イロト 不得 ト イヨト イヨト

$$L_p(X) := \begin{cases} 1 - a_p X + p X^2 & \text{if } E \text{ has good reduction at } p \\ 1 - X & \text{if } E \text{ has split mult. reduction at } p \\ 1 + X & \text{if } E \text{ has nonsplit mult. reduction at } p \\ 1 & \text{if } E \text{ has additive reduction at } p \end{cases}$$

< 日 > < 同 > < 回 > < 回 > .

$$L_p(X) := \begin{cases} 1 - a_p X + p X^2 & \text{if } E \text{ has good reduction at } p \\ 1 - X & \text{if } E \text{ has split mult. reduction at } p \\ 1 + X & \text{if } E \text{ has nonsplit mult. reduction at } p \\ 1 & \text{if } E \text{ has additive reduction at } p \end{cases}$$

For any $\mathfrak{s} \in \mathbb{C}$ with $\Re(\mathfrak{s}) > 3/2$, we define the L-function $L(E, \mathfrak{s})$ of E by

$$L(E,\mathfrak{s}) = \prod_p L_p(p^{-\mathfrak{s}})^{-1}.$$

where the product runs over all prime numbers.

イロト イヨト イヨト ・

$$L_p(X) := \begin{cases} 1 - a_p X + p X^2 & \text{if } E \text{ has good reduction at } p \\ 1 - X & \text{if } E \text{ has split mult. reduction at } p \\ 1 + X & \text{if } E \text{ has nonsplit mult. reduction at } p \\ 1 & \text{if } E \text{ has additive reduction at } p \end{cases}$$

For any $\mathfrak{s} \in \mathbb{C}$ with $\Re(\mathfrak{s}) > 3/2$, we define the L-function $L(E, \mathfrak{s})$ of E by

$$L(E,\mathfrak{s}) = \prod_p L_p(p^{-\mathfrak{s}})^{-1}.$$

where the product runs over all prime numbers.

• Bloch and Beilinson calculated the value of L(E, 2) for particular elliptic curves, and Beilinson and Deligne gave explicit conjectures about the special values of $L(E, \mathfrak{s})$.

$$L_p(X) := \begin{cases} 1 - a_p X + p X^2 & \text{if } E \text{ has good reduction at } p \\ 1 - X & \text{if } E \text{ has split mult. reduction at } p \\ 1 + X & \text{if } E \text{ has nonsplit mult. reduction at } p \\ 1 & \text{if } E \text{ has additive reduction at } p \end{cases}$$

For any $\mathfrak{s} \in \mathbb{C}$ with $\Re(\mathfrak{s}) > 3/2$, we define the L-function $L(E, \mathfrak{s})$ of E by

$$L(E,\mathfrak{s}) = \prod_p L_p(p^{-\mathfrak{s}})^{-1}.$$

where the product runs over all prime numbers.

- Bloch and Beilinson calculated the value of L(E, 2) for particular elliptic curves, and Beilinson and Deligne gave explicit conjectures about the special values of $L(E, \mathfrak{s})$.
- Transcendence of special values of $L(E, \mathfrak{s})$ over \mathbb{Q} is not known.

Section 2

Goss L-functions and results

C. Namoijam (NTHU)

Special values of Goss L-functions

January 18, 2022

(日) (四) (日) (日) (日)

э

Notation

 $\mathbb{F}_q :=$ finite field, with q a power of a prime p $\mathbf{A} := \mathbb{F}_{q}[t]$, the polynomial ring in the variable t over \mathbb{F}_{q} $A := \mathbb{F}_{q}[\theta]$, the polynomial ring in the variable θ over \mathbb{F}_{q} $A_+ :=$ the set of monic polynomials of A $K := \mathbb{F}_q(\theta)$, rational functions in the variable θ over \mathbb{F}_q $K_{\infty} := \mathbb{F}_q((1/\theta))$, the completion of K with respect to the fixed absolute value $|\cdot|_{\infty}$ at the infinite place normalized so that $|\theta|_{\infty} = q$ $\mathbb{C}_{\infty} :=$ completion of an algebraic closure of K_{∞} \overline{K} := algebraic closure of K inside \mathbb{C}_{∞}

$$\tau^i(a) := a^{(i)} := a^{q^i}.$$

æ

$$\tau^i(a) := a^{(i)} := a^{q^i}.$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B = (b_{j,k}) \in \operatorname{Mat}_{m \times \ell}(\mathbb{C}_{\infty})$, we set $B^{(i)} = (b_{j,k}^{(i)})$.

- ∢ /⊐ >

→ ∃ →

$$\tau^i(a) := a^{(i)} := a^{q^i}.$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B = (b_{j,k}) \in \operatorname{Mat}_{m \times \ell}(\mathbb{C}_{\infty})$, we set $B^{(i)} = (b_{j,k}^{(i)})$.

 \bullet Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$\tau c = c^{(1)}\tau, \quad c \in L.$$

< 4 ₽ × <

→ Ξ →

$$\tau^i(a) := a^{(i)} := a^{q^i}.$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B = (b_{j,k}) \in \operatorname{Mat}_{m \times \ell}(\mathbb{C}_{\infty})$, we set $B^{(i)} = (b_{j,k}^{(i)})$.

 \bullet Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$\tau c = c^{(1)}\tau, \quad c \in L.$$

 We let Mat_{m×ℓ}(L)[τ] be the set of polynomials of τ with coefficients in Mat_{m×ℓ}(L).

$$\tau^i(a) := a^{(i)} := a^{q^i}.$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B = (b_{j,k}) \in \operatorname{Mat}_{m \times \ell}(\mathbb{C}_{\infty})$, we set $B^{(i)} = (b_{j,k}^{(i)})$.

 \bullet Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$\tau c = c^{(1)}\tau, \quad c \in L.$$

- We let Mat_{m×ℓ}(L)[τ] be the set of polynomials of τ with coefficients in Mat_{m×ℓ}(L).
- When $m = \ell$, define the ring $\operatorname{Mat}_m(L)[[\tau]]$ of power series of τ with coefficients in $\operatorname{Mat}_m(L) := \operatorname{Mat}_{m \times m}(L)$ subject to the condition

$$\tau B = B^{(1)}\tau, \quad B \in \operatorname{Mat}_m(L).$$

$$\tau^i(a) := a^{(i)} := a^{q^i}.$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B = (b_{j,k}) \in \operatorname{Mat}_{m \times \ell}(\mathbb{C}_{\infty})$, we set $B^{(i)} = (b_{j,k}^{(i)})$.

 \bullet Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$\tau c = c^{(1)}\tau, \quad c \in L.$$

- We let Mat_{m×ℓ}(L)[τ] be the set of polynomials of τ with coefficients in Mat_{m×ℓ}(L).
- When $m = \ell$, define the ring $\operatorname{Mat}_m(L)[[\tau]]$ of power series of τ with coefficients in $\operatorname{Mat}_m(L) := \operatorname{Mat}_{m \times m}(L)$ subject to the condition

$$\tau B = B^{(1)}\tau, \quad B \in \operatorname{Mat}_m(L).$$

Also let $\operatorname{Mat}_m(L)[\tau] \subset \operatorname{Mat}_m(L)[[\tau]]$ to be the subring of polynomials of τ .

C. Namoijam (NTHU)

$$\phi(t) := \theta + c_1 \tau + \dots + c_r \tau^r, \quad c_r \neq 0.$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

э

$$\phi(t) := \theta + c_1 \tau + \dots + c_r \tau^r, \quad c_r \neq 0.$$

 We say that a Drinfeld A-module φ defined over A is isomorphic to φ over K if there exists c ∈ K[×] we have

$$c\varphi(t) = \phi(t)c.$$

< 日 > < 同 > < 回 > < 回 > .

$$\phi(t) := \theta + c_1 \tau + \dots + c_r \tau^r, \quad c_r \neq 0.$$

 We say that a Drinfeld A-module φ defined over A is isomorphic to φ over K if there exists c ∈ K[×] we have

$$c\varphi(t) = \phi(t)c.$$

• Let φ be given by

$$\varphi(t) := \theta + b_1 \tau + \dots + b_r \tau^r,$$

where $b_1, \ldots, b_r \in A$, $b_r \neq 0$.

ヘロト 人間ト ヘヨト ヘヨト

$$\phi(t) := \theta + c_1 \tau + \dots + c_r \tau^r, \quad c_r \neq 0.$$

• We say that a Drinfeld A-module φ defined over A is isomorphic to ϕ over K if there exists $c \in K^{\times}$ we have

$$c\varphi(t) = \phi(t)c.$$

• Let φ be given by

$$\varphi(t) := \theta + b_1 \tau + \dots + b_r \tau^r,$$

where $b_1, \ldots, b_r \in A$, $b_r \neq 0$.

• For an irreducible polynomial $\beta \in A_+$, let \mathbb{F}_{β} denote the field $A/(\beta)$, and let $\overline{\varphi}$ be the Drinfeld A-module given by reduction modulo β ,

$$\overline{\varphi}(t) = \overline{\theta} + \overline{b}_1 \tau + \dots + \overline{b}_{r_0} \tau^{r_0} \quad , \overline{b}_{r_0} \neq 0.$$

$$\phi(t) := \theta + c_1 \tau + \dots + c_r \tau^r, \quad c_r \neq 0.$$

• We say that a Drinfeld A-module φ defined over A is isomorphic to ϕ over K if there exists $c \in K^{\times}$ we have

$$c\varphi(t) = \phi(t)c.$$

• Let φ be given by

$$\varphi(t) := \theta + b_1 \tau + \dots + b_r \tau^r,$$

where $b_1, \ldots, b_r \in A$, $b_r \neq 0$.

• For an irreducible polynomial $\beta \in A_+$, let \mathbb{F}_{β} denote the field $A/(\beta)$, and let $\overline{\varphi}$ be the Drinfeld A-module given by reduction modulo β ,

$$\overline{\varphi}(t) = \overline{\theta} + \overline{b}_1 \tau + \dots + \overline{b}_{r_0} \tau^{r_0} \quad , \overline{b}_{r_0} \neq 0.$$

We say that ϕ has good reduction at β if there exists a Drinfeld A-module φ defined over A and isomorphic to ϕ such that $r_0 = r$.

C. Namoijam (NTHU)

Special values of Goss L-functions

• Let $\mathbb{F}_{\beta}^{\text{sep}}$ be a fixed separable closure of \mathbb{F}_{β} . Let $v \in \mathbf{A}$ be an irreducible polynomial, and let $v|_{t=\theta} = v \in A$. Suppose that $v \neq \beta$. Define

$$\overline{\varphi}[v^n] := \{ f \in \overline{\varphi}(\mathbb{F}_{\beta}^{\operatorname{sep}}) \, | \, \boldsymbol{v}^n \cdot f = 0 \}.$$

• Let $\mathbb{F}_{\beta}^{\text{sep}}$ be a fixed separable closure of \mathbb{F}_{β} . Let $v \in \mathbf{A}$ be an irreducible polynomial, and let $v|_{t=\theta} = v \in A$. Suppose that $v \neq \beta$. Define

$$\overline{\varphi}[v^n] := \{ f \in \overline{\varphi}(\mathbb{F}_{\beta}^{\operatorname{sep}}) \,|\, \boldsymbol{v}^n \cdot f = 0 \}.$$

Define the *v*-adic Tate module of $\overline{\varphi}$ by

$$T_v(\overline{\varphi}) := \varprojlim \overline{\varphi}[v^n].$$

C. Namoijam (NTHU)

Special values of Goss L-functions

January 18, 2022

• Let S be the set of primes in A_+ where ϕ does not have good reduction.

< □ > < 同 >

э

∃ →

- Let S be the set of primes in A_+ where ϕ does not have good reduction.
- For $\beta \notin S$ prime, let $P_{\beta}(x)$ be the characteristic polynomial of the $q^{\deg_{\theta}(\beta)}$ -th power Frobenius map $\tau^{\deg_{\theta}(\beta)}$ on the Tate module $T_{v}(\overline{\varphi})$. $P_{\beta}(x)$ does not depend on v and $P_{\beta}(x) \in A[x]$.

- Let S be the set of primes in A_+ where ϕ does not have good reduction.
- For $\beta \notin S$ prime, let $P_{\beta}(x)$ be the characteristic polynomial of the $q^{\deg_{\theta}(\beta)}$ -th power Frobenius map $\tau^{\deg_{\theta}(\beta)}$ on the Tate module $T_v(\overline{\varphi})$. $P_{\beta}(x)$ does not depend on v and $P_{\beta}(x) \in A[x]$.
- For $\beta \notin S$ prime, let

$$Q_{\beta}(x) = x^r P_{\beta}(1/x)$$

be the reciprocal polynomial of $P_{\beta}(x)$.

11/19

・ロット 御り とうりょうり しつ

• The Goss L-function corresponding to ϕ is defined as

$$L(\phi,s) := \alpha_{\phi,s} \prod_{\substack{\beta \notin S, \beta \in A_+ \\ \beta \text{ prime}}} Q_{\beta}(\beta^{-s})^{-1}, \quad s \in \mathbb{Z}.$$

• Here $\alpha_{\phi,s}$ is the product of local factors $\prod_{f \in S} Q'_f(f^{-s})^{-1}$, and is an element of K^{\times} due to Gardeyn.

→ 3 → 3

< □ > < /□ >

• The Goss L-function corresponding to ϕ is defined as

$$L(\phi,s) := \alpha_{\phi,s} \prod_{\substack{\beta \notin S, \beta \in A_+ \\ \beta \text{ prime}}} Q_{\beta}(\beta^{-s})^{-1}, \quad s \in \mathbb{Z}.$$

- Here $\alpha_{\phi,s}$ is the product of local factors $\prod_{f \in S} Q'_f(f^{-s})^{-1}$, and is an element of K^{\times} due to Gardeyn.
- For example, if ϕ is the Carlitz module C, that is $C_t = \theta + \tau$, then for $n \ge 2$ the Carlitz zeta values at n 1 is

$$L(C,n) = \sum_{a \in A_+} \frac{1}{a^{n-1}} \in K_{\infty},$$

• The Goss L-function corresponding to ϕ is defined as

$$L(\phi,s) := \alpha_{\phi,s} \prod_{\substack{\beta \notin S, \beta \in A_+ \\ \beta \text{ prime}}} Q_{\beta}(\beta^{-s})^{-1}, \quad s \in \mathbb{Z}.$$

- Here $\alpha_{\phi,s}$ is the product of local factors $\prod_{f \in S} Q'_f(f^{-s})^{-1}$, and is an element of K^{\times} due to Gardeyn.
- For example, if ϕ is the Carlitz module C, that is $C_t = \theta + \tau$, then for $n \ge 2$ the Carlitz zeta values at n 1 is

$$L(C,n) = \sum_{a \in A_+} \frac{1}{a^{n-1}} \in K_{\infty},$$

and Yu proved that L(C, n) is transcendental over \overline{K} .

Special values of Goss L-functions

Theorem (Gezmiș-N., 2021)

Let n be a positive integer and ϕ be a Drinfeld A-module defined over K. Then, $L(\phi, n)$ is transcendental over \overline{K} .

→

Definition

Let L be a subfield of \mathbb{C}_{∞} . A *t-module of dimension* $s \in \mathbb{Z}_{\geq 1}$ *defined over* L is a tuple $G = (\mathbb{G}_{a/L}^s, \psi)$ consisting of the *s*-dimensional additive algebraic group $\mathbb{G}_{a/L}^s$ over L and an \mathbb{F}_q -algebra homomorphism $\psi : \mathbf{A} \to \operatorname{Mat}_s(L)[\tau]$ given by

$$\psi(t) = A_0 + A_1\tau + \dots + A_m\tau^m$$

for some $m \in \mathbb{Z}_{\geq 0}$ so that $d_{\psi}(t) := A_0 = \theta I_s + N$ where I_s is the $s \times s$ identity matrix and N is a nilpotent matrix.

Definition

Let L be a subfield of \mathbb{C}_{∞} . A *t*-module of dimension $s \in \mathbb{Z}_{\geq 1}$ defined over L is a tuple $G = (\mathbb{G}_{a/L}^s, \psi)$ consisting of the *s*-dimensional additive algebraic group $\mathbb{G}_{a/L}^s$ over L and an \mathbb{F}_q -algebra homomorphism $\psi : \mathbf{A} \to \operatorname{Mat}_s(L)[\tau]$ given by

$$\psi(t) = A_0 + A_1\tau + \dots + A_m\tau^m$$

for some $m \in \mathbb{Z}_{\geq 0}$ so that $d_{\psi}(t) := A_0 = \theta I_s + N$ where I_s is the $s \times s$ identity matrix and N is a nilpotent matrix.

Set $Lie(G)(L) := Mat_{s \times 1}(L)$ and equip it with the A-module structure given by

$$t \cdot x := d_{\psi}(t)x = A_0 x, \quad x \in \operatorname{Lie}(G)(L).$$

Definition

Let L be a subfield of \mathbb{C}_{∞} . A *t*-module of dimension $s \in \mathbb{Z}_{\geq 1}$ defined over L is a tuple $G = (\mathbb{G}_{a/L}^s, \psi)$ consisting of the *s*-dimensional additive algebraic group $\mathbb{G}_{a/L}^s$ over L and an \mathbb{F}_q -algebra homomorphism $\psi : \mathbf{A} \to \operatorname{Mat}_s(L)[\tau]$ given by

$$\psi(t) = A_0 + A_1 \tau + \dots + A_m \tau^m$$

for some $m \in \mathbb{Z}_{\geq 0}$ so that $d_{\psi}(t) := A_0 = \theta I_s + N$ where I_s is the $s \times s$ identity matrix and N is a nilpotent matrix.

Set $Lie(G)(L) := Mat_{s \times 1}(L)$ and equip it with the A-module structure given by

$$t \cdot x := d_{\psi}(t)x = A_0 x, \quad x \in \operatorname{Lie}(G)(L).$$

Also define $G(L) := Mat_{s \times 1}(L)$ whose A-module structure is given by

$$t \cdot x := \psi(t)x = A_0 x + A_1 x^{(1)} + \dots + A_m x^{(m)}, \ x \in G(L).$$

• There exists a unique infinite series $\operatorname{Exp}_G := \sum_{i \ge 0} \alpha_i \tau^i \in \operatorname{Mat}_s(L)[[\tau]] \text{ satisfying } \alpha_0 = \operatorname{I}_s \text{ and}$ $\operatorname{Exp}_G \operatorname{d}_{\psi}(t) = \psi(t) \operatorname{Exp}_G.$

• There exists a unique infinite series $\operatorname{Exp}_G := \sum_{i \ge 0} \alpha_i \tau^i \in \operatorname{Mat}_s(L)[[\tau]]$ satisfying $\alpha_0 = I_s$ and

$$\operatorname{Exp}_G \operatorname{d}_{\psi}(t) = \psi(t) \operatorname{Exp}_G.$$

• It defines an everywhere convergent function $\operatorname{Exp}_G: \operatorname{Lie}(G)(\mathbb{C}_\infty) \to G(\mathbb{C}_\infty)$, the exponential function of G, given by $\operatorname{Exp}_G(x) = \sum_{i>0} \alpha_i x^{(i)}$ for any $x \in \operatorname{Lie}(G)(\mathbb{C}_\infty)$. • There exists a unique infinite series $\operatorname{Exp}_G := \sum_{i \ge 0} \alpha_i \tau^i \in \operatorname{Mat}_s(L)[[\tau]]$ satisfying $\alpha_0 = I_s$ and

$$\operatorname{Exp}_G \operatorname{d}_{\psi}(t) = \psi(t) \operatorname{Exp}_G.$$

- It defines an everywhere convergent function $\operatorname{Exp}_G : \operatorname{Lie}(G)(\mathbb{C}_{\infty}) \to G(\mathbb{C}_{\infty})$, the exponential function of G, given by $\operatorname{Exp}_G(x) = \sum_{i \ge 0} \alpha_i x^{(i)}$ for any $x \in \operatorname{Lie}(G)(\mathbb{C}_{\infty})$.
- We set the A-module $\Lambda_G := \operatorname{Ker}(\operatorname{Exp}_G) \subset \operatorname{Lie}(G)(\mathbb{C}_{\infty})$, and a non-zero element of Λ_G is called a *a period of* G.

• Recall ϕ the Drinfeld A-module defined over K defined by $\phi(t) = \theta + c_1 \tau + \dots + c_r \tau^r$, where $c_r \neq 0$.

Special values of Goss L-functions

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

• Recall ϕ the Drinfeld A-module defined over K defined by $\phi(t) = \theta + c_1 \tau + \dots + c_r \tau^r$, where $c_r \neq 0$.

• For $n \ge 1$, let $G_n := (\mathbb{G}_{a/K}^{rn+r-1}, \phi_n)$ be the t-module given by

$$\phi_n(t) := \theta \operatorname{Id}_{rn+r-1} + N + c_r^{-1} E\tau,$$

• Recall ϕ the Drinfeld A-module defined over K defined by $\phi(t) = \theta + c_1 \tau + \dots + c_r \tau^r$, where $c_r \neq 0$.

• For $n \ge 1$, let $G_n := (\mathbb{G}_{a/K}^{rn+r-1}, \phi_n)$ be the t-module given by

$$\phi_n(t) := \theta \operatorname{Id}_{rn+r-1} + N + c_r^{-1} E\tau,$$

where

$$N := \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ \ddots & \ddots & \ddots & \ddots & \vdots \\ & \ddots & & \ddots & \ddots & 0 \\ & 0 & \cdots & 0 & 1 \\ & & 0 & \cdots & 0 \\ & & & \ddots & \vdots \\ & & & & & 0 \end{pmatrix}, E := \begin{pmatrix} 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & & & \vdots & \vdots \\ 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ -c_{r-1} & c_r & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -c_1 & 0 & \cdots & c_r & 0 & \cdots & 0 \end{pmatrix}$$

Here, the last r-rows of N contain only zeros.

C. Namoijam (NTHU)

There exist vectors $b_1, \ldots, b_r \in \text{Lie}(G_n)(K_\infty)$ so that $\text{Exp}_{G_n}(b_i) \in G_n(A)$ for each $1 \leq i \leq r$ such that if we set

$$b_i := [b_{i,1}, \dots, b_{i,rn+r-1}]^{\mathsf{T}}$$

э

There exist vectors $b_1, \ldots, b_r \in \text{Lie}(G_n)(K_\infty)$ so that $\text{Exp}_{G_n}(b_i) \in G_n(A)$ for each $1 \leq i \leq r$ such that if we set

$$b_i := [b_{i,1}, \dots, b_{i,rn+r-1}]^{\mathsf{T}}$$

and consider

$$R := \begin{pmatrix} b_{1,rn} & \dots & b_{r,rn} \\ \vdots & & \vdots \\ b_{1,rn+r-1} & \dots & b_{r,rn+r-1} \end{pmatrix} \in \operatorname{GL}_r(K_{\infty}),$$

э

There exist vectors $b_1, \ldots, b_r \in \text{Lie}(G_n)(K_\infty)$ so that $\text{Exp}_{G_n}(b_i) \in G_n(A)$ for each $1 \leq i \leq r$ such that if we set

$$b_i := [b_{i,1}, \dots, b_{i,rn+r-1}]^{\mathsf{T}}$$

and consider

$$R := \begin{pmatrix} b_{1,rn} & \dots & b_{r,rn} \\ \vdots & & \vdots \\ b_{1,rn+r-1} & \dots & b_{r,rn+r-1} \end{pmatrix} \in \operatorname{GL}_r(K_{\infty}),$$

then $L(\phi,n+1)=c\det(R)$ for some $c\in K\setminus\{0\}$

3

Proving our result is now equivalent to proving the following theorem.

Theorem (Gezmiș-N., 2021)

Let $m \geq 1$. For $1 \leq \ell \leq m$, let $\boldsymbol{y}_{\ell} = [y_{\ell,1}, \ldots, y_{\ell,rn+r-1}]^{\mathsf{T}} \in \operatorname{Lie}(\mathfrak{G}_n)(\mathbb{C}_{\infty})$ be such that $\operatorname{Exp}_{\mathfrak{G}_n}(\boldsymbol{y}_{\ell}) \in \mathfrak{G}_n(\overline{K})$. If

$$\mathcal{Y}_n := \mathbf{f}(y_{1,rn}, \dots, y_{1,rn+(r-1)}, \dots, \dots, y_{m,rn}, \dots, y_{m,rn+(r-1)}) \neq 0$$

for some non-constant polynomial $\mathbf{f} \in \overline{K}[X_1, \ldots, X_{rm}]$, then it is transcendental over \overline{K} .

Proving our result is now equivalent to proving the following theorem.

Theorem (Gezmiș-N., 2021)

Let $m \geq 1$. For $1 \leq \ell \leq m$, let $\boldsymbol{y}_{\ell} = [y_{\ell,1}, \ldots, y_{\ell,rn+r-1}]^{\mathsf{T}} \in \operatorname{Lie}(\mathfrak{G}_n)(\mathbb{C}_{\infty})$ be such that $\operatorname{Exp}_{\mathfrak{G}_n}(\boldsymbol{y}_{\ell}) \in \mathfrak{G}_n(\overline{K})$. If

$$\mathcal{Y}_n := \mathbf{f}(y_{1,rn}, \dots, y_{1,rn+(r-1)}, \dots, \dots, y_{m,rn}, \dots, y_{m,rn+(r-1)}) \neq 0$$

for some non-constant polynomial $\mathbf{f} \in \overline{K}[X_1, \ldots, X_{rm}]$, then it is transcendental over \overline{K} .

We prove this using Chang's and Papanikolas's method, and Papanikolas's transcendence theory.

18 / 19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANK YOU!

Special values of Goss L-functions

January 18, 2022

・ロト ・四ト ・ヨト ・ヨト