Transcendence of special values of Goss L-functions attached to Drinfeld modules

Changningphaabi Namoijam, NTHU
2021 TMS Annual Meeting, January 17-18, 2022
(joint work with Oğuz Gezmiș)

Overview

(1) Classical case

(2) Goss L-functions and results

Section 1

Classical case

L-functions

- The Riemann zeta function $\zeta(\mathfrak{s})$ is given by

$$
\zeta(\mathfrak{s})=\sum_{n=1}^{\infty} \frac{1}{n^{\mathfrak{s}}}, \quad \text { where } \mathfrak{s} \in \mathbb{C} \text { satisfying } \Re(\mathfrak{s})>1
$$

L-functions

- The Riemann zeta function $\zeta(\mathfrak{s})$ is given by

$$
\zeta(\mathfrak{s})=\sum_{n=1}^{\infty} \frac{1}{n^{\mathfrak{s}}}, \quad \text { where } \mathfrak{s} \in \mathbb{C} \text { satisfying } \Re(\mathfrak{s})>1
$$

- When s is a positive integer, $\zeta(2 s)$ is transcendental over \mathbb{Q}.

L-functions

- The Riemann zeta function $\zeta(\mathfrak{s})$ is given by

$$
\zeta(\mathfrak{s})=\sum_{n=1}^{\infty} \frac{1}{n^{\mathfrak{s}}}, \quad \text { where } \mathfrak{s} \in \mathbb{C} \text { satisfying } \Re(\mathfrak{s})>1
$$

- When s is a positive integer, $\zeta(2 s)$ is transcendental over \mathbb{Q}.
- When $s \in \mathbb{Z}_{\geq 2}$, it is expected that $\zeta(s)$ is transcendental over \mathbb{Q}.

Let E be an elliptic curve defined over \mathbb{Z}. For a prime $p \in \mathbb{Z}$, let E_{p} denote the reduction of E modulo p.

Let E be an elliptic curve defined over \mathbb{Z}. For a prime $p \in \mathbb{Z}$, let E_{p} denote the reduction of E modulo p. Set $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$, and define the polynomial $L_{p}(X) \in \mathbb{Z}[X]$ given by

Let E be an elliptic curve defined over \mathbb{Z}. For a prime $p \in \mathbb{Z}$, let E_{p} denote the reduction of E modulo p. Set $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$, and define the polynomial $L_{p}(X) \in \mathbb{Z}[X]$ given by

$$
L_{p}(X):=\left\{\begin{array}{ll}
1-a_{p} X+p X^{2} & \text { if } E \text { has good reduction at } p \\
1-X & \text { if } E \text { has split mult. reduction at } p \\
1+X & \text { if } E \text { has nonsplit mult. reduction at } p \\
1 & \text { if } E \text { has additive reduction at } p
\end{array} .\right.
$$

Let E be an elliptic curve defined over \mathbb{Z}. For a prime $p \in \mathbb{Z}$, let E_{p} denote the reduction of E modulo p. Set $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$, and define the polynomial $L_{p}(X) \in \mathbb{Z}[X]$ given by

$$
L_{p}(X):=\left\{\begin{array}{ll}
1-a_{p} X+p X^{2} & \text { if } E \text { has good reduction at } p \\
1-X & \text { if } E \text { has split mult. reduction at } p \\
1+X & \text { if } E \text { has nonsplit mult. reduction at } p \\
1 & \text { if } E \text { has additive reduction at } p
\end{array} .\right.
$$

For any $\mathfrak{s} \in \mathbb{C}$ with $\Re(\mathfrak{s})>3 / 2$, we define the L-function $L(E, \mathfrak{s})$ of E by

$$
L(E, \mathfrak{s})=\prod_{p} L_{p}\left(p^{-\mathfrak{s}}\right)^{-1}
$$

where the product runs over all prime numbers.

Let E be an elliptic curve defined over \mathbb{Z}. For a prime $p \in \mathbb{Z}$, let E_{p} denote the reduction of E modulo p. Set $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$, and define the polynomial $L_{p}(X) \in \mathbb{Z}[X]$ given by

$$
L_{p}(X):= \begin{cases}1-a_{p} X+p X^{2} & \text { if } E \text { has good reduction at } p \\ 1-X & \text { if } E \text { has split mult. reduction at } p \\ 1+X & \text { if } E \text { has nonsplit mult. reduction at } p \\ 1 & \text { if } E \text { has additive reduction at } p\end{cases}
$$

For any $\mathfrak{s} \in \mathbb{C}$ with $\Re(\mathfrak{s})>3 / 2$, we define the L-function $L(E, \mathfrak{s})$ of E by

$$
L(E, \mathfrak{s})=\prod_{\mathfrak{m}} L_{p}\left(p^{-\mathfrak{s}}\right)^{-1} .
$$

where the product runs over all prime numbers.

- Bloch and Beilinson calculated the value of $L(E, 2)$ for particular elliptic curves, and Beilinson and Deligne gave explicit conjectures about the special values of $L(E, \mathfrak{s})$.

Let E be an elliptic curve defined over \mathbb{Z}. For a prime $p \in \mathbb{Z}$, let E_{p} denote the reduction of E modulo p. Set $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$, and define the polynomial $L_{p}(X) \in \mathbb{Z}[X]$ given by

$$
L_{p}(X):=\left\{\begin{array}{ll}
1-a_{p} X+p X^{2} & \text { if } E \text { has good reduction at } p \\
1-X & \text { if } E \text { has split mult. reduction at } p \\
1+X & \text { if } E \text { has nonsplit mult. reduction at } p \\
1 & \text { if } E \text { has additive reduction at } p
\end{array} .\right.
$$

For any $\mathfrak{s} \in \mathbb{C}$ with $\Re(\mathfrak{s})>3 / 2$, we define the L-function $L(E, \mathfrak{s})$ of E by

$$
L(E, \mathfrak{s})=\prod_{\mathfrak{n}} L_{p}\left(p^{-\mathfrak{s}}\right)^{-1}
$$

where the product runs over all prime numbers.

- Bloch and Beilinson calculated the value of $L(E, 2)$ for particular elliptic curves, and Beilinson and Deligne gave explicit conjectures about the special values of $L(E, \mathfrak{s})$.
- Transcendence of special values of $L(E, \mathfrak{s})$ over \mathbb{Q} is not known.

Section 2

Goss L-functions and results

Notation

$\mathbb{F}_{q}:=$ finite field, with q a power of a prime p
$\mathbf{A}:=\mathbb{F}_{q}[t]$, the polynomial ring in the variable t over \mathbb{F}_{q}
$A:=\mathbb{F}_{q}[\theta]$, the polynomial ring in the variable θ over \mathbb{F}_{q}
$A_{+}:=$the set of monic polynomials of A
$K:=\mathbb{F}_{q}(\theta)$, rational functions in the variable θ over \mathbb{F}_{q}
$K_{\infty}:=\mathbb{F}_{q}((1 / \theta))$, the completion of K with respect to the fixed absolute value $|\cdot|_{\infty}$ at the infinite place normalized so that $|\theta|_{\infty}=q$
$\mathbb{C}_{\infty}:=$ completion of an algebraic closure of K_{∞}
$\bar{K}:=$ algebraic closure of K inside \mathbb{C}_{∞}

- For any $a \in \mathbb{C}_{\infty}$ and $i \in \mathbb{Z}$, we define

$$
\tau^{i}(a):=a^{(i)}:=a^{q^{i}}
$$

- For any $a \in \mathbb{C}_{\infty}$ and $i \in \mathbb{Z}$, we define

$$
\tau^{i}(a):=a^{(i)}:=a^{q^{i}}
$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B=\left(b_{j, k}\right) \in \operatorname{Mat}_{m \times \ell}\left(\mathbb{C}_{\infty}\right)$, we set $B^{(i)}=\left(b_{j, k}^{(i)}\right)$.

- For any $a \in \mathbb{C}_{\infty}$ and $i \in \mathbb{Z}$, we define

$$
\tau^{i}(a):=a^{(i)}:=a^{q^{i}}
$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B=\left(b_{j, k}\right) \in \operatorname{Mat}_{m \times \ell}\left(\mathbb{C}_{\infty}\right)$, we set $B^{(i)}=\left(b_{j, k}^{(i)}\right)$.

- Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$
\tau c=c^{(1)} \tau, \quad c \in L
$$

- For any $a \in \mathbb{C}_{\infty}$ and $i \in \mathbb{Z}$, we define

$$
\tau^{i}(a):=a^{(i)}:=a^{q^{i}}
$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B=\left(b_{j, k}\right) \in \operatorname{Mat}_{m \times \ell}\left(\mathbb{C}_{\infty}\right)$, we set $B^{(i)}=\left(b_{j, k}^{(i)}\right)$.

- Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$
\tau c=c^{(1)} \tau, \quad c \in L
$$

- We let $\operatorname{Mat}_{m \times \ell}(L)[\tau]$ be the set of polynomials of τ with coefficients in $\operatorname{Mat}_{m \times \ell}(L)$.
- For any $a \in \mathbb{C}_{\infty}$ and $i \in \mathbb{Z}$, we define

$$
\tau^{i}(a):=a^{(i)}:=a^{q^{i}}
$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B=\left(b_{j, k}\right) \in \operatorname{Mat}_{m \times \ell}\left(\mathbb{C}_{\infty}\right)$, we set $B^{(i)}=\left(b_{j, k}^{(i)}\right)$.

- Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$
\tau c=c^{(1)} \tau, \quad c \in L
$$

- We let $\operatorname{Mat}_{m \times \ell}(L)[\tau]$ be the set of polynomials of τ with coefficients in $\operatorname{Mat}_{m \times \ell}(L)$.
- When $m=\ell$, define the ring $\operatorname{Mat}_{m}(L)[[\tau]]$ of power series of τ with coefficients in $\operatorname{Mat}_{m}(L):=\operatorname{Mat}_{m \times m}(L)$ subject to the condition

$$
\tau B=B^{(1)} \tau, \quad B \in \operatorname{Mat}_{m}(L)
$$

- For any $a \in \mathbb{C}_{\infty}$ and $i \in \mathbb{Z}$, we define

$$
\tau^{i}(a):=a^{(i)}:=a^{q^{i}}
$$

Let $m, \ell \in \mathbb{Z}_{\geq 1}$. For a matrix $B=\left(b_{j, k}\right) \in \operatorname{Mat}_{m \times \ell}\left(\mathbb{C}_{\infty}\right)$, we set $B^{(i)}=\left(b_{j, k}^{(i)}\right)$.

- Define the non-commutative polynomial ring $L[\tau]$ subject to the condition

$$
\tau c=c^{(1)} \tau, \quad c \in L
$$

- We let $\operatorname{Mat}_{m \times \ell}(L)[\tau]$ be the set of polynomials of τ with coefficients in $\operatorname{Mat}_{m \times \ell}(L)$.
- When $m=\ell$, define the ring $\operatorname{Mat}_{m}(L)[[\tau]]$ of power series of τ with coefficients in $\operatorname{Mat}_{m}(L):=\operatorname{Mat}_{m \times m}(L)$ subject to the condition

$$
\tau B=B^{(1)} \tau, \quad B \in \operatorname{Mat}_{m}(L)
$$

Also let $\operatorname{Mat}_{m}(L)[\tau] \subset \operatorname{Mat}_{m}(L)[[\tau]]$ to be the subring of polynomials of τ.

Let R be an A-subalgebra of \mathbb{C}_{∞}. A Drinfeld A-module ϕ defined over R of rank r is an \mathbb{F}_{q}-algebra homomorphism $\phi: \mathbf{A} \rightarrow R[\tau]$ defined by

$$
\phi(t):=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad c_{r} \neq 0 .
$$

Let R be an A-subalgebra of \mathbb{C}_{∞}. A Drinfeld A-module ϕ defined over R of rank r is an \mathbb{F}_{q}-algebra homomorphism $\phi: \mathbf{A} \rightarrow R[\tau]$ defined by

$$
\phi(t):=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad c_{r} \neq 0 .
$$

- We say that a Drinfeld A-module φ defined over A is isomorphic to ϕ over K if there exists $c \in K^{\times}$we have

$$
c \varphi(t)=\phi(t) c .
$$

Let R be an A-subalgebra of \mathbb{C}_{∞}. A Drinfeld A-module ϕ defined over R of rank r is an \mathbb{F}_{q}-algebra homomorphism $\phi: \mathbf{A} \rightarrow R[\tau]$ defined by

$$
\phi(t):=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad c_{r} \neq 0 .
$$

- We say that a Drinfeld A-module φ defined over A is isomorphic to ϕ over K if there exists $c \in K^{\times}$we have

$$
c \varphi(t)=\phi(t) c .
$$

- Let φ be given by

$$
\varphi(t):=\theta+b_{1} \tau+\cdots+b_{r} \tau^{r}
$$

where $b_{1}, \ldots, b_{r} \in A, b_{r} \neq 0$.

Let R be an A-subalgebra of \mathbb{C}_{∞}. A Drinfeld A-module ϕ defined over R of rank r is an \mathbb{F}_{q}-algebra homomorphism $\phi: \mathbf{A} \rightarrow R[\tau]$ defined by

$$
\phi(t):=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad c_{r} \neq 0 .
$$

- We say that a Drinfeld A-module φ defined over A is isomorphic to ϕ over K if there exists $c \in K^{\times}$we have

$$
c \varphi(t)=\phi(t) c
$$

- Let φ be given by

$$
\varphi(t):=\theta+b_{1} \tau+\cdots+b_{r} \tau^{r}
$$

where $b_{1}, \ldots, b_{r} \in A, b_{r} \neq 0$.

- For an irreducible polynomial $\beta \in A_{+}$, let \mathbb{F}_{β} denote the field $A /(\beta)$, and let $\bar{\varphi}$ be the Drinfeld A-module given by reduction modulo β,

$$
\bar{\varphi}(t)=\bar{\theta}+\bar{b}_{1} \tau+\cdots+\bar{b}_{r_{0}} \tau^{r_{0}} \quad, \bar{b}_{r_{0}} \neq 0 .
$$

Let R be an A-subalgebra of \mathbb{C}_{∞}. A Drinfeld A-module ϕ defined over R of rank r is an \mathbb{F}_{q}-algebra homomorphism $\phi: \mathbf{A} \rightarrow R[\tau]$ defined by

$$
\phi(t):=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad c_{r} \neq 0 .
$$

- We say that a Drinfeld A-module φ defined over A is isomorphic to ϕ over K if there exists $c \in K^{\times}$we have

$$
c \varphi(t)=\phi(t) c
$$

- Let φ be given by

$$
\varphi(t):=\theta+b_{1} \tau+\cdots+b_{r} \tau^{r}
$$

where $b_{1}, \ldots, b_{r} \in A, b_{r} \neq 0$.

- For an irreducible polynomial $\beta \in A_{+}$, let \mathbb{F}_{β} denote the field $A /(\beta)$, and let $\bar{\varphi}$ be the Drinfeld \mathbf{A}-module given by reduction modulo β,

$$
\bar{\varphi}(t)=\bar{\theta}+\bar{b}_{1} \tau+\cdots+\bar{b}_{r_{0}} \tau^{r_{0}} \quad, \bar{b}_{r_{0}} \neq 0 .
$$

We say that ϕ has good reduction at β if there exists a Drinfeld \mathbf{A}-module φ defined over A and isomorphic to ϕ such that $r_{0}=r$.

- Let $\mathbb{F}_{\beta}^{\text {sep }}$ be a fixed separable closure of \mathbb{F}_{β}. Let $\boldsymbol{v} \in \mathbf{A}$ be an irreducible polynomial, and let $\left.\boldsymbol{v}\right|_{t=\theta}=v \in A$. Suppose that $v \neq \beta$. Define

$$
\bar{\varphi}\left[v^{n}\right]:=\left\{f \in \bar{\varphi}\left(\mathbb{F}_{\beta}^{\mathrm{sep}}\right) \mid \boldsymbol{v}^{n} \cdot f=0\right\} .
$$

- Let $\mathbb{F}_{\beta}^{\text {sep }}$ be a fixed separable closure of \mathbb{F}_{β}. Let $\boldsymbol{v} \in \mathbf{A}$ be an irreducible polynomial, and let $\left.\boldsymbol{v}\right|_{t=\theta}=v \in A$. Suppose that $v \neq \beta$. Define

$$
\bar{\varphi}\left[v^{n}\right]:=\left\{f \in \bar{\varphi}\left(\mathbb{F}_{\beta}^{\mathrm{sep}}\right) \mid \boldsymbol{v}^{n} \cdot f=0\right\}
$$

Define the v-adic Tate module of $\bar{\varphi}$ by

$$
T_{v}(\bar{\varphi}):=\varliminf_{\succsim} \bar{\varphi}\left[v^{n}\right] .
$$

- Let S be the set of primes in A_{+}where ϕ does not have good reduction.
- Let S be the set of primes in A_{+}where ϕ does not have good reduction.
- For $\beta \notin S$ prime, let $P_{\beta}(x)$ be the characteristic polynomial of the $q^{\operatorname{deg}_{\theta}(\beta)}$-th power Frobenius map $\tau^{\operatorname{deg}_{\theta}(\beta)}$ on the Tate module $T_{v}(\bar{\varphi})$. $P_{\beta}(x)$ does not depend on v and $P_{\beta}(x) \in A[x]$.
- Let S be the set of primes in A_{+}where ϕ does not have good reduction.
- For $\beta \notin S$ prime, let $P_{\beta}(x)$ be the characteristic polynomial of the $q^{\operatorname{deg}_{\theta}(\beta)}$-th power Frobenius map $\tau^{\operatorname{deg}_{\theta}(\beta)}$ on the Tate module $T_{v}(\bar{\varphi})$. $P_{\beta}(x)$ does not depend on v and $P_{\beta}(x) \in A[x]$.
- For $\beta \notin S$ prime, let

$$
Q_{\beta}(x)=x^{r} P_{\beta}(1 / x)
$$

be the reciprocal polynomial of $P_{\beta}(x)$.

- The Goss L-function corresponding to ϕ is defined as

$$
L(\phi, s):=\alpha_{\phi, s} \prod_{\substack{\beta \notin S, \beta \in A_{+} \\ \beta \text { prime }}} Q_{\beta}\left(\beta^{-s}\right)^{-1}, \quad s \in \mathbb{Z}
$$

- Here $\alpha_{\phi, s}$ is the product of local factors $\prod_{f \in S} Q_{f}^{\prime}\left(f^{-s}\right)^{-1}$, and is an element of K^{\times}due to Gardeyn.
- The Goss L-function corresponding to ϕ is defined as

$$
L(\phi, s):=\alpha_{\phi, s} \prod_{\substack{\beta \notin S, \beta \in A_{+} \\ \beta \text { prime }}} Q_{\beta}\left(\beta^{-s}\right)^{-1}, \quad s \in \mathbb{Z}
$$

- Here $\alpha_{\phi, s}$ is the product of local factors $\prod_{f \in S} Q_{f}^{\prime}\left(f^{-s}\right)^{-1}$, and is an element of K^{\times}due to Gardeyn.
- For example, if ϕ is the Carlitz module C, that is $C_{t}=\theta+\tau$, then for $n \geq 2$ the Carlitz zeta values at $n-1$ is

$$
L(C, n)=\sum_{a \in A_{+}} \frac{1}{a^{n-1}} \in K_{\infty},
$$

- The Goss L-function corresponding to ϕ is defined as

$$
L(\phi, s):=\alpha_{\phi, s} \prod_{\substack{\beta \notin S, \beta \in A_{+} \\ \beta \text { prime }}} Q_{\beta}\left(\beta^{-s}\right)^{-1}, \quad s \in \mathbb{Z}
$$

- Here $\alpha_{\phi, s}$ is the product of local factors $\prod_{f \in S} Q_{f}^{\prime}\left(f^{-s}\right)^{-1}$, and is an element of K^{\times}due to Gardeyn.
- For example, if ϕ is the Carlitz module C, that is $C_{t}=\theta+\tau$, then for $n \geq 2$ the Carlitz zeta values at $n-1$ is

$$
L(C, n)=\sum_{a \in A_{+}} \frac{1}{a^{n-1}} \in K_{\infty}
$$

and Yu proved that $L(C, n)$ is transcendental over \bar{K}.

Theorem (Gezmiș-N., 2021)

Let n be a positive integer and ϕ be a Drinfeld A-module defined over K. Then, $L(\phi, n)$ is transcendental over \bar{K}.

Definition

Let L be a subfield of \mathbb{C}_{∞}. A t-module of dimension $s \in \mathbb{Z}_{\geq 1}$ defined over L is a tuple $G=\left(\mathbb{G}_{a / L}^{s}, \psi\right)$ consisting of the s-dimensional additive algebraic group $\mathbb{G}_{a / L}^{s}$ over L and an \mathbb{F}_{q}-algebra homomorphism $\psi: \mathbf{A} \rightarrow \operatorname{Mat}_{s}(L)[\tau]$ given by

$$
\psi(t)=A_{0}+A_{1} \tau+\cdots+A_{m} \tau^{m}
$$

for some $m \in \mathbb{Z}_{\geq 0}$ so that $\mathrm{d}_{\psi}(t):=A_{0}=\theta \mathrm{I}_{s}+N$ where I_{s} is the $s \times s$ identity matrix and N is a nilpotent matrix.

Definition

Let L be a subfield of \mathbb{C}_{∞}. A t-module of dimension $s \in \mathbb{Z}_{\geq 1}$ defined over L is a tuple $G=\left(\mathbb{G}_{a / L}^{s}, \psi\right)$ consisting of the s-dimensional additive algebraic group $\mathbb{G}_{a / L}^{s}$ over L and an \mathbb{F}_{q}-algebra homomorphism $\psi: \mathbf{A} \rightarrow \operatorname{Mat}_{s}(L)[\tau]$ given by

$$
\psi(t)=A_{0}+A_{1} \tau+\cdots+A_{m} \tau^{m}
$$

for some $m \in \mathbb{Z}_{\geq 0}$ so that $\mathrm{d}_{\psi}(t):=A_{0}=\theta \mathrm{I}_{s}+N$ where I_{s} is the $s \times s$ identity matrix and N is a nilpotent matrix.

Set $\operatorname{Lie}(G)(L):=\operatorname{Mat}_{s \times 1}(L)$ and equip it with the A-module structure given by

$$
t \cdot x:=\mathrm{d}_{\psi}(t) x=A_{0} x, \quad x \in \operatorname{Lie}(G)(L)
$$

Definition

Let L be a subfield of \mathbb{C}_{∞}. A t-module of dimension $s \in \mathbb{Z}_{\geq 1}$ defined over L is a tuple $G=\left(\mathbb{G}_{a / L}^{s}, \psi\right)$ consisting of the s-dimensional additive algebraic group $\mathbb{G}_{a / L}^{s}$ over L and an \mathbb{F}_{q}-algebra homomorphism $\psi: \mathbf{A} \rightarrow \operatorname{Mat}_{s}(L)[\tau]$ given by

$$
\psi(t)=A_{0}+A_{1} \tau+\cdots+A_{m} \tau^{m}
$$

for some $m \in \mathbb{Z}_{\geq 0}$ so that $\mathrm{d}_{\psi}(t):=A_{0}=\theta \mathrm{I}_{s}+N$ where I_{s} is the $s \times s$ identity matrix and N is a nilpotent matrix.

Set $\operatorname{Lie}(G)(L):=\operatorname{Mat}_{s \times 1}(L)$ and equip it with the A-module structure given by

$$
t \cdot x:=\mathrm{d}_{\psi}(t) x=A_{0} x, \quad x \in \operatorname{Lie}(G)(L)
$$

Also define $G(L):=\operatorname{Mat}_{s \times 1}(L)$ whose \mathbf{A}-module structure is given by

$$
t \cdot x:=\psi(t) x=A_{0} x+A_{1} x^{(1)}+\cdots+A_{m} x^{(m)}, \quad x \in G(L) .
$$

- There exists a unique infinite series
$\operatorname{Exp}_{G}:=\sum_{i \geq 0} \alpha_{i} \tau^{i} \in \operatorname{Mat}_{s}(L)[[\tau]]$ satisfying $\alpha_{0}=I_{s}$ and

$$
\operatorname{Exp}_{G} \mathrm{~d}_{\psi}(t)=\psi(t) \operatorname{Exp}_{G}
$$

- There exists a unique infinite series
$\operatorname{Exp}_{G}:=\sum_{i \geq 0} \alpha_{i} \tau^{i} \in \operatorname{Mat}_{s}(L)[[\tau]]$ satisfying $\alpha_{0}=I_{s}$ and

$$
\operatorname{Exp}_{G} \mathrm{~d}_{\psi}(t)=\psi(t) \operatorname{Exp}_{G}
$$

- It defines an everywhere convergent function
$\operatorname{Exp}_{G}: \operatorname{Lie}(G)\left(\mathbb{C}_{\infty}\right) \rightarrow G\left(\mathbb{C}_{\infty}\right)$, the exponential function of G, given by $\operatorname{Exp}_{G}(x)=\sum_{i \geq 0} \alpha_{i} x^{(i)}$ for any $x \in \operatorname{Lie}(G)\left(\mathbb{C}_{\infty}\right)$.
- There exists a unique infinite series $\operatorname{Exp}_{G}:=\sum_{i \geq 0} \alpha_{i} \tau^{i} \in \operatorname{Mat}_{s}(L)[[\tau]]$ satisfying $\alpha_{0}=I_{s}$ and

$$
\operatorname{Exp}_{G} \mathrm{~d}_{\psi}(t)=\psi(t) \operatorname{Exp}_{G}
$$

- It defines an everywhere convergent function
$\operatorname{Exp}_{G}: \operatorname{Lie}(G)\left(\mathbb{C}_{\infty}\right) \rightarrow G\left(\mathbb{C}_{\infty}\right)$, the exponential function of G, given by $\operatorname{Exp}_{G}(x)=\sum_{i \geq 0} \alpha_{i} x^{(i)}$ for any $x \in \operatorname{Lie}(G)\left(\mathbb{C}_{\infty}\right)$.
- We set the A-module $\Lambda_{G}:=\operatorname{Ker}\left(\operatorname{Exp}_{G}\right) \subset \operatorname{Lie}(G)\left(\mathbb{C}_{\infty}\right)$, and a non-zero element of Λ_{G} is called a a period of G.
- Recall ϕ the Drinfeld A-module defined over K defined by

$$
\phi(t)=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad \text { where } c_{r} \neq 0
$$

- Recall ϕ the Drinfeld A-module defined over K defined by

$$
\phi(t)=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad \text { where } c_{r} \neq 0
$$

- For $n \geq 1$, let $G_{n}:=\left(\mathbb{G}_{a / K}^{r n+r-1}, \phi_{n}\right)$ be the t-module given by

$$
\phi_{n}(t):=\theta \operatorname{Id}_{r n+r-1}+N+c_{r}^{-1} E \tau
$$

- Recall ϕ the Drinfeld A-module defined over K defined by

$$
\phi(t)=\theta+c_{1} \tau+\cdots+c_{r} \tau^{r}, \quad \text { where } c_{r} \neq 0
$$

- For $n \geq 1$, let $G_{n}:=\left(\mathbb{G}_{a / K}^{r n+r-1}, \phi_{n}\right)$ be the t-module given by

$$
\phi_{n}(t):=\theta \mathrm{Id}_{r n+r-1}+N+c_{r}^{-1} E \tau
$$

where

$$
N:=\left(\begin{array}{ccccccc}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
& \ddots & & \ddots & \ddots & & \vdots \\
& & \ddots & & \ddots & \ddots & 0 \\
& & & 0 & \cdots & 0 & 1 \\
& & & & & \cdots & 0 \\
& & & & & \ddots & \vdots \\
& & & & & & 0
\end{array}\right), E:=\left(\begin{array}{ccccccc}
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
\vdots & & & & & & \vdots \\
0 & & & & & & 0 \\
1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
& & & & & & \\
-c_{r-1} & c_{r} & \ddots & & & & \vdots \\
\vdots & & \ddots & \ddots & & & \vdots \\
-c_{1} & 0 & \cdots & c_{r} & 0 & \cdots & 0
\end{array}\right) .
$$

Here, the last r-rows of N contain only zeros.

There exist vectors $b_{1}, \ldots, b_{r} \in \operatorname{Lie}\left(G_{n}\right)\left(K_{\infty}\right)$ so that $\operatorname{Exp}_{G_{n}}\left(b_{i}\right) \in G_{n}(A)$ for each $1 \leq i \leq r$ such that if we set

$$
b_{i}:=\left[b_{i, 1}, \ldots, b_{i, r n+r-1}\right]^{\top}
$$

There exist vectors $b_{1}, \ldots, b_{r} \in \operatorname{Lie}\left(G_{n}\right)\left(K_{\infty}\right)$ so that $\operatorname{Exp}_{G_{n}}\left(b_{i}\right) \in G_{n}(A)$ for each $1 \leq i \leq r$ such that if we set

$$
b_{i}:=\left[b_{i, 1}, \ldots, b_{i, r n+r-1}\right]^{\top}
$$

and consider

$$
R:=\left(\begin{array}{ccc}
b_{1, r n} & \cdots & b_{r, r n} \\
\vdots & & \vdots \\
b_{1, r n+r-1} & \ldots & b_{r, r n+r-1}
\end{array}\right) \in \operatorname{GL}_{r}\left(K_{\infty}\right)
$$

There exist vectors $b_{1}, \ldots, b_{r} \in \operatorname{Lie}\left(G_{n}\right)\left(K_{\infty}\right)$ so that $\operatorname{Exp}_{G_{n}}\left(b_{i}\right) \in G_{n}(A)$ for each $1 \leq i \leq r$ such that if we set

$$
b_{i}:=\left[b_{i, 1}, \ldots, b_{i, r n+r-1}\right]^{\top}
$$

and consider

$$
R:=\left(\begin{array}{ccc}
b_{1, r n} & \cdots & b_{r, r n} \\
\vdots & & \vdots \\
b_{1, r n+r-1} & \ldots & b_{r, r n+r-1}
\end{array}\right) \in \mathrm{GL}_{r}\left(K_{\infty}\right)
$$

then $L(\phi, n+1)=c \operatorname{det}(R)$ for some $c \in K \backslash\{0\}$

Proving our result is now equivalent to proving the following theorem.

Theorem (Gezmiș-N., 2021)

Let $m \geq 1$. For $1 \leq \ell \leq m$, let $\boldsymbol{y}_{\ell}=\left[y_{\ell, 1}, \ldots, y_{\ell, r n+r-1}\right]^{\top} \in \operatorname{Lie}\left(\mathfrak{G}_{n}\right)\left(\mathbb{C}_{\infty}\right)$ be such that $\operatorname{Exp}_{\mathfrak{G}_{n}}\left(\boldsymbol{y}_{\ell}\right) \in \mathfrak{G}_{n}(\bar{K})$. If

$$
\mathcal{Y}_{n}:=\mathbf{f}\left(y_{1, r n}, \ldots, y_{1, r n+(r-1)}, \ldots, \ldots, y_{m, r n}, \ldots, y_{m, r n+(r-1)}\right) \neq 0
$$

for some non-constant polynomial $\mathbf{f} \in \bar{K}\left[X_{1}, \ldots, X_{r m}\right]$, then it is transcendental over \bar{K}.

Proving our result is now equivalent to proving the following theorem.

Theorem (Gezmiș-N., 2021)

Let $m \geq 1$. For $1 \leq \ell \leq m$, let $\boldsymbol{y}_{\ell}=\left[y_{\ell, 1}, \ldots, y_{\ell, r n+r-1}\right]^{\top} \in \operatorname{Lie}\left(\mathfrak{G}_{n}\right)\left(\mathbb{C}_{\infty}\right)$ be such that $\operatorname{Exp}_{\mathfrak{G}_{n}}\left(\boldsymbol{y}_{\ell}\right) \in \mathfrak{G}_{n}(\bar{K})$. If

$$
\mathcal{Y}_{n}:=\mathbf{f}\left(y_{1, r n}, \ldots, y_{1, r n+(r-1)}, \ldots, \ldots, y_{m, r n}, \ldots, y_{m, r n+(r-1)}\right) \neq 0
$$

for some non-constant polynomial $\mathbf{f} \in \bar{K}\left[X_{1}, \ldots, X_{r m}\right]$, then it is transcendental over \bar{K}.

We prove this using Chang's and Papanikolas's method, and Papanikolas's transcendence theory.

THANK YOU!

